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‘Bvo different pursuit-evasion games are considered from the evader’s point of view. The phase space is a plane, each of the two 
players controlling the motion of a point only along its own coordinate. The terminal sets are not convex; in the first problem, 
the set is an arc of a circle, in the second, the union of tow segments. In both games evasion cannot the achieved by means of 
programmed controls, but it can be achieved using feedback control. However, the strategies, which are continuous functions 
of the phase vector, have different properties in each problem. In the first, they cannot guarantee evasion (which is typical for 
the linear-convex case as well), but in the second they can (which is impossible in linear-convex games with a fixed final time). 
Verification that evasion is unachievable using such strategies reduces here to proving the solvability of a certain initial-value 
problem for an advanced differential equation, to which the Schauder principle is applicable. 0 2003 Elsevier Science Ltd. 
All rights reserved. 

In many problems in the theory of positional differential games [l-4] evasion cannot be guaranteed 
using continuous [5] or Caratheodory [6] strategies. This problem has been thoroughly investigated 
([5,5], [l, Sec. 551, [2, Sec. 31, [3, Sets 5,6,22,23]) on the assumption that the dynamics is linear and 
the terminal set is convex. The properties of strategies which are continuous functions of the phase 
vector have also been studied without this assumption [7]. 

The examples presented below demonstrate the essential difference between the case of a non-convex 
terminal set and the linear-convex case. These examples are constructed making use of only quite simple 
mathematical tools. 

1. EVASION OF AN ARC 

Suppose the motion of a point x = (x1,x2) in the plane is described by the following system of differential 
equations 

i, = v, i2 = 2(1-f)& fE [O, l] (l-1) 

where u and u are the controls of the two players, chosen in the interval [0, 11. We shall use classical 
motions. The functionx: [0, l] + R2 must be absolutely continuous and satisfy the differential equations 
almost everywhere. The initial position of the point is assumed to be zero: 

x(0) = 0 (1.2) 

The terminal set it4 is defined in the x1, x2, plane by the relations x2 = 1, x1 2 0, x2 a 0 (x2 = xi + xi). 
Thus, M is a quarter of the circumference of the unit circle about the origin. The function u(t) is assumed 
to be Lebesgue-measurable. It is required to choose the control u in such a way that the terminal set 
can be evaded at a finite time, i.e. that the condition x( 1) E A4 is satisfied for any admissible noise u(t). 

Before we consider strategies that are continuous with respect to the phase variable, let us convince 
ourselves that the problem is non-degenerate. To that end, we must verify that programmed controls 
u = u(t) cannot guarantee evasion of the TM and outline a discontinuous way to construct u that will 
guarantee evasion. 

We will first show that programmed control u = v(t) do not guarantee evasion even if u is taken to 
be a constant. 
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Proper& 1.1. For any measurable function u: [0, l] + [0, 11, a constant u E [0, l] exists such that the 
corresponding solution x of the initial-value problem (1.1) (1.2) satisfies the condition x( 1) E M. 

Proof. Put 

of problem (1.1) (1.2) we havexz(1) = U. Thus, 

We now present a method of feedback control that guarantees evasion. We will construct a simple method, without 
concerning ourselves about its optimality in any sense. 

Proper& 1.2. For 0 d t < 112, define u = 1, For l/2 < t G 1, define 

1, if x2( l/2) 2 12/25 
2)= 

0, if x,(1/2) < 12/25 

Then for any measurable function U: [0, l] + [0, l] the corresponding solution of initial-value problem 
(l.l), (1.2) satisfies the inequality 

]I - ]x(1)1/ > l/10 (1.3) 

where the norm is the Euclidean norm. 
In fact, it will be shown that this mode of control yields a distance of slightly more than l/10 from 

the terminal set. 

Proof. If x2(1/2) 3 12/25, then u = 1 for all t E [O. 11, and thereforext(1) = 1. Since u is non-negative, we have 
x2(l) 2 x,(1/2) 2 12125. Thus, Ix(l) (m > ll/lO and inequality (1.3) holds with something to spare. But if 
x2(1/2) < 12125, then u = 1 for t E [0, l/2] and u = 0 for t E [l/2, 11. Consequently, xl(l) = l/2. Now 

I I 
x2(1) = x,(1/2)+2J(l-~)u(~)dz<12/25+2 J(1-2)~ = 73~00 

l/2 l/2 

Therefore, Ix(l) ] < 4 78291100 < 9110. Inequality (1.3) is again satisfied with something to spare. 

Remark 1.1. The simple mode of evasion presented in the formulation of Property 1.2 is far from optimal. For 
example, optimization of the constant 12125 enables one to improve the guaranteed result slightly. 

Remark 1.2. A control law that guarantees evasion in this problem may also be implemented as a positional 
strategy, following the well-known formalization of [l], using stepwise schemes with meshes in a time interval that 
become increasingly finer. In fact, the control law in the formulation of Property 1.2 is consistent with any positional 
strategy of player U, which eliminates the possibility of a guaranteed transfer to the terminal set. It follows by the 
Alternative Theorem [l, Sec. 171 that a positional strategy of player v exists that guarantees evasion in constructive 
motions. This conclusion is similar to a previous one ([2, p. 231, [l, p. 2431). 

We shall now show that, in this problem, evasion of the terminal set cannot be achieved using strategies 
u = u(t, x1, x2) that satisfy the Caratheodory conditions, that is, such that the function u(& x1, x2) is 
continuous in x1, x2 for almost every fixed t and Lebesgue-measurable in t for all fixed x1, x2. For such 
strategies, the absolutely continuous solution of the initial-value problem (l.l), (1.2) may not be unique. 
We shall assume that a strategy guarantees evasion if none of the motions corresponding to that strategy 
and different admissible noises terminate at the terminal set. 

The fact that evasion cannot be guaranteed in this problem using strategies that satisfy the 
Caratheodory conditions is easily deduced from a previous result [7, Corollary 11. As a target set in the 
space of the trajectories one takes the collection of all continuous functions that end at the terminal 
set. It is immediately obvious that all the conditions of [7, Corollary l] are satisfied; the fact that the 
relevant intersections are acyclic follows from their convexity, and that they are not empty follows from 
Property 1.1 established above. This method of proof is based in the final analysis on theorem due to 
Eilenberg-Montgomery. 
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However, taking the specific features of the problem into consideration, one can give a direct proof 
based on Schauder’s principle [9, p. 6161, without making use of algebraic topology. With this approach, 
one can actually establish a stronger result for the example under consideration: A Cratheodory strategy 
cannot guarantee evasion even if the noise u is taken to be independent of the time t. We thus obtain 
the following property, an analogue of Property 1.1 (which was concerned with the simpler case of 
programmed controls). 

Property 1.3. Suppose the function u: [0, l] x R2 + [0, l] satisfies the Caratheodory conditions. Then 
a constant u E [O.l] exists such that the initial-value problem (l.l), (1.2), where u = u(t, x1, x2), has at 
least one solution x for which x( 1) E M. 

Proof. We have to establish the existence of an absolutely continuous function X: [0, l] -+ R2 and a number 
u E [O.l] such that 

-i, = tit, x,, x2), i* = 2( 1 - t)u, x(0) = 0, X2(1) = 1 

Hence it can be seen that x*(t) = t(2 - t)u. Substituting this expression into the last of the equalities, we find that 
u = dm. El’ tminating x2 and u from this system of relations, we obtain the following initial-value problem 
for a scalar advanced functional-differential equation. 

i,(t) = u(t,X,(o,f(2-f,Jzq, x,(O) = 0 

It remains to verify that this problem is solvable; this will imply the existence ofx and u with the necessary properties. 
Let S denote the set of all functions z: [0, l] + [0, l] that satisfy a Lipschitz condition with constant 1. By the 

Arzela-Ascoli Theorem [9, p. 481, S is a compact set in the space of continuous functions. In addition, the set S is 
convex. For z(.) E S, t E [0, 11, we set 

F(Z(~))O) = ju(r,z(d..7(2--)~~)h 
0 

The function F@(.))(t), as a function of the argument t, satisfies a Lipschitz condition with constant 1, since 
0 =G u G 1. The mappingF takes S into itself and is continuous in the uniform norm of the set of continuous functions. 
Bye Schauder’s theorem, F has at least one Iixed point in S. Thus, the initial-value problem introduced above for 
the relevant functional-differential equation is solvable. 

Remark 1.3. Suppose the strategy v = u(t, x1, x2) is such that the solution of initial-value problem (1.1) (1.2) is 
unique for any number u E [0, l] (for example, u(t, x1, x2) satisfies a Lipschitz condition). One can then replace 
Schauder’s principle in the proof of Property 1.3 by the fact that a continuous scalar function defined in a closed 
interval and changing sign there must vanish somewhere. One can then approximate an arbitrary Caratheodory 
strategy by a Lipschitz strategy. 

Remark 1.4. One can consider in a analogous way games for (l.l), (1.2) with other curves as the terminal set 
M. For example, M may be a segment of a straight line (this gives the convex case) or an “inverted” quarter-circle, 
that is, the set defined by 

(X,-l)2+(X*-1)2 = 1, x,51, x*51 

Remark 1.5. Properties like those of the example analysed above may also be found in some degenerate situations. 
The following obvious reasoning makes it possible, given a differential game, to formally construct an equivalent 
game with non-convex terminal set. For a given initial position and the usual conditions on the dynamics of the 
system, all trajectories of the game will remain in a certain closed sphere in phase space. We can assume that the 
terminal set is contained in that sphere Adding a point outside the sphere to the terminal set makes it non-convex 
and non-connected, while all the main properties of the game obviously remain the same. Under these conditions 
the part of the terminal set that actually participates in the differential game is unchanged. 

Remark 1.6. There is a simple example of a game that does not use differential equations, for which the situation 
described in this section nevertheless arises. Suppose the first player chooses a number u E [0, l] and the second 
chooses a number u E [O, 11. The aim of the second player is to maximize the payoff, which is equal to ] u - u] 
Obviously, no choice of a constant v will guarantee a non-zero payoff (the analogue of programmed controls in 
differential games). Suppose now that the second player designates his number as u = q(u), where ‘p: [0, l] + 
[0, l] is a fixed function. No continuous function cp will guarantee a non-zero result for the second player (the 
analogue of continuous strategies in differential games). Indeed, the function cp has a fixed point, as follows easily, 
e.g., from Schauder’s principle. On the other hand, the discontinuous function 
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VW = 
i 

1, o<u11/2 
0, 1/2<u~l 

guarantees the second player a payoff of at least l/z (the analogue of discontinuous strategies). 

2. EVASION OF TWO SEGMENTS 

Consider a point with coordinates x1, x2 in the plane, whose motion is described by the system 

1, = u, i, = u (2.1) 

and which begins at zero: 
x(0) = 0 (2.2) 

The independent variable t E [0, 21 is time. The controls u and v of the two players lie in [-1, 11. The 
solution x: [0, l] + R2 is absolutely continuous and must satisfy the system of differential equations 
almost everywhere. We assume that the function u = u(t) is Lebesgue-measurable. The terminal set 
M is the union of the segment x1 = 1,O G x2 G 1 with the segment x1 = -1, -1 G x2 6 0. The problem 
is, using the control u, to guarantee evasion at a finite instant of time, x( 1) E M, in the presence of noise 
u(t)* 

We shall verify that programmed controls do not guarantee evasion in this problem, even if attention 
is confined to just two possible noises. 

Property 2.1. For any measurable function u = u(t), where u: [0, l] + [-1, 11, at least one of the two 
solutions of problem (2.1), (2.2) corresponding to the constants u = 1, u E -1 satisfies the relationx(1) 
E hf. 

Proof. Any solution of problem (2.1), (2.2) is such that Ix*(l) ] c 1, since Iv(t) ] s 1. If (v) a 0, we need only 
take u = 1. But if(u) < 0, we take u 2 -1. When (u) = 0, one can take either of these two noise values. 

We will now establish properties that unable us to construct a strategy which guarantees evasion of the terminal 
set. In particular, the strategies constructed will be continuous. 

Property 2.2. Let u: [0, l] x R + [-1, 11; assume that the functions u(t, t), u(t, -t) of the argument t 
and also the function u: [0, l] + [-1, l] are measurable, and moreover 

w, z>> < 0, (MT, -2)) > 0 

where the integration is performed with respect to 7. Then the problem 

4 = u(t), i’2 = v(t,x,), x(0) = 0, x(1) E A4 (2.3) 

has no solutions. 

Proof (by reductio ad absurdurn). Suppose problem (2.3) has a solution x. It follows from the condition 
*u’,:,’ E M that ]ni(l)] = 1. Let us first consider the case xi(l) = 1. Since (u(t)] s 1, this is possible only if 

= 1 almost everywhere. Thenq(t) = t for all t E [O. 11, and thereforexZ(l) = (v(z, 2)) < 0. Thus, x(l) 6~ M. 
Similarly, when xi(l) = -1 we have u(t) = -1, xl(t) E -t, q(l) > 0, and again n(l) P M. This contradiction shows 
that problem (2.3) is unsolvable. 

Let us assume that the function u = u(t, x1) satisfies the assumptions of Property 2.2. Suppose moreover 
that this function, paired with any admissible noise u = u(t), yields an initial-value problem (2.1), (2.2) 
which has an absolutely continuous solution. (For that to be true it will suffice that for any continuous 
w the superposition u(t, w(t)) should be measurable.) Then the function u can serve as a strategy 
guaranteeing evasion in the differential game under consideration in classical motions. An example is 
the continuous strategy 

1, X,5-1 
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As shown previously, this way of constructing evasion strategies in this game is based on very simple 
premises, reducing to the consideration of only two noise values. However, it does not yield a lower 
estimate of the distance p(x( l), M) from the point x( 1) to the terminal set M. We shall now present a 
method that yields such an estimate. 

Propetty 2.3. Let E E [0, l/z] be a fixed number and let u = 
such that 

u(~r) be a function with values in [-1, l] 

u(x,) = -sgnni for lx,] >a (2.4) 

Suppose the function U: [0, l] + [-1, l] is measurable and the functionx: [0, l] -+ R2 is absolutely 
continuous and satisfies the initial condition 

Then 

4 = u(t), f, = u(q), x(0) = 0 (2.5) 

p(x(l),lw1E,, E, = (l-2&)/8 P-6) 

Varying E, one can choose functions u and u such that equality is achieved in this estimate. 
Note that, for the estimate in Property 2.3 to be true, the behaviour of the function u(xr) E [-1, l] 

for Ix1 1 < E is immaterial. For thesex values, the function may be discontinuous or even many-valued. 
It is only important that problem (2.5) should have an absolutely continuous solution. 

Proof If (x,(l) ) s E, then p&(l), h4) 5 1 - E 3 l/2 > l/G, and inequality (2.6) holds. Now let 1x1(l) 1 > E. To 
fix our ideas, let us assume that xi(l) > E. Consideration of the case of negative xi(l) is analogous. Let p+ denote 
the distance fromxi(1) to the segmentxl = 1,O d x1 =G 1, and p-the distance from the same point to the segment 
x1 = -1, -1 G x2 =S 0. Then p@(l), M) = min(p-, p,), and moreover 

p->l+x,(l)>l>&, 

To establish inequality (2.6), it remains to show that p+ may also be estimated from below by the same number. 
A number 4 E [0, 1) exists such that xi(s) = E, and for t > 5 we have xi(t) > E. We have E c 5. Indeed 

In addition 

& = x1(& = x,(O) + ju(r)rn I5 
0 

1 

x*(l) = X1(@ + (u(7)& 5 E + 1 - 4 
5 

Furthermore 

x*(l) = x*(0)+~~x,h))m+)~-l)m~-l +25 
0 5 

Thus, we have inequalities 
l-x,(1)25-EZO, -xz(l)21-25 (2.7) 

Let us first assume that 5 4 l/z It then follows from the second inequality of (2.7) that xi(l) G 0. Therefore . 

P+ = J (1 - x,(l))* + x;w 

Hence, using inequalities (2.7) and the inequality 5 =S i/r, we obtain 

p+2 (5-&)*+(1-25)* = s(5-(2+&)15)*+&:2E, 

Now consider the case 5 > l/z. Using the first inequality of (2.7), we obtain 

p+~l-x,(1)15-E>ln-E2El 

The required estimate is thus proved in all cases. 
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It remains to verify that there are motions for which the estimate is an equality. To that end, varying the number 
E, we construct functions u and u which make it an equality. Define 

u(t) = 
i 

s-2&. O<t<E2 

1, &*<t<l; E2 = (2+&)/5 

Since E E [0, l/z], we have 5 - 2/~ E [0, 11. Integrating, we find that 

x*(t) = 
(5-2/E&, o<t<E2 

t-E2+&, E2<t<1 

Therefore,xl(l) = (3 + 4E)/5 E [3/5, 11. Let 

u(q) = 
1, X,<E 

-1, XI>& 

Condition (2.4) is satisfied. Substituting (2.8) into (2.9) we get 

(2.8) 

(2.9) 

Integration gives 

Thus, x2(1) = (-1 + 2&)/5 E [-l/S, 01. Taking the limiting values x1( 1) andxz( 1) into consideration, we see that the 
distance p@(l), M) is obtained at the point (LO). Consequently 

P(X(l),M) = J(l -X,(1))2+r;(l) = fh4E-2)2+(2&- 1)2 = E, 

which makes the estimate an equality. 

Remark 2.1. Let E E (0, l/z). There are many ways to complete the definition of the function (2.4) for ]xl ] G E 
so as to obtain a continuous function with values in [-1, 11. By Property 2.3, the continuous strategy thus obtained 
guarantees evasion of the terminal set in classical motions. For example, define 

I 

1, X1<-& 

u(x,) = -E-lx,, lx,1 SE 

-1, XI>& 

One can also complete the definition of the function (2.4) as an arbitrarily smooth function, even an infinitely 
differentiable one 

1 

1, x,l-& 

W,) = 1 - 2exp(-(x, + E)-2)exp(-(x, - E)-~)), lx,l <E 

-1, X,>E 

Remark 2.2. When E = 0 the function (2.4), with its definition completed at x1 = 0 by an arbitrary number in 
t-1, 11, yields a discontinuous strategy. Since this discontinuous strategy and initial-value problem (2.5) are fairly 
simple in structure, one can consider absolutely continuous solutions of problem (2.5). By Property 2.3, the strategy 
introduced here guarantees evasion of the terminal set by the point at a finite instant of time, by a distance of at 
least l/J? = 0.447 . . . 

Remark 2.3. When E = 0, the function (2.4) can be redefined at x1 = 0 as a multi-valued mapping, by letting 
u(0) be the entire segment t-1, 11. We obtain a multi-valued strategy which is upper semicontinuous (with respect 
to inclusion). The initial-value problem (2.5) will then involve a differential inclusion. By Property 2.3, this multi- 
valued strategy guarantees evasion of the terminal set at a finite instant of time. It also guarantees a distance of 
at least l/6 from the terminal set, as in the case of the discontinuous single-valued strategy defined above. 

Remark 2.4. The evasion problem studied in this section demonstrates, in particular, that under the assumptions 
of Corollary 1 of [7] and hence under the assumptions of the theorem of [7], one cannot drop the assumption that 
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the corresponding intersections are acyclic. Indeed, the problem in question satisfies all the assumptions of the 
corollary with the exception of acyclic@, but the conclusion of the corollary does not hold here, since in our problem, 
by virtue of Remark 2.1, one can guarantee evasion using a continuous strategy. 

This research was supported financially by the Russian Foundation for Basic Research (00-01-00367, 
02-01-00769). 
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